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Abstract--The quantity 'buckling rotation' is defined, for buckle folds, as the total rotation of a fold limb minus 
the rotation that would occur due to pure shear if no competence contrast existed. Using existing models 
(theoretical and experimental) of buckle-fold development, the quantity 'buckling rotation' has been calculated 
for successive small increments of strain and plotted against strain or limb dip. The resulting curves are skewed 
and bell-shaped, indicating an initial sharp increase in buckling rotation early in fold development followed by a 
gentle, asymptotic decrease. The curve height and position are dependent on the competence contrast and, in 
multilayer systems, on the ratio of competent to incompetent layer thickness. The initial sharp increase in 
buckling rotation corresponds to the period of most active layer-parallel shortening during fold development. 

INTRODUCTION DETERMINATION OF BUCKLING ROTATION 

EXPERIMENTAL and theoretical studies of buckle folding 
since the 1950's have included theoretical and experi- 
mental investigations of low-amplitude folding, domi- 
nant wavelengths, fold shapes and stress and strain 
distributions of both single-layer and multilayer systems 
(e.g. Biot 1957, Chapple 1968, Ramberg 1964). More 
recently, finite-element analysis has been applied to the 
simulation of buckle-fold development for a wide range 
of material properties (e.g. Dieterich & Carter 1969). 
These methods have shed light on many aspects of 
buckle folding such as the initiation and early develop- 
ment of folds, the effects of various material properties 
and viscosities of the layer and its matrix, and the change 
in shape with associated stress and strain distributions 
during fold growth. The present paper investigates a 
single aspect of buckle folding; the rotation of the fold 
limb during fold growth, incorporating the relevant 
results from some of these studies. 

The deformation at any point during buckle folding 
may be thought of as many small increments of simul- 
taneous pure shear and rigid-body rotation. In the 
simplest approach, both components are constant for 
each deformation increment, a model discussed by Hud- 
leston & Stephansson (1973). However, such a model 
meets problems at high strains. This is illustrated by the 
case of a layer which buckles due to compression parallel 
to the initial orientation of the layer. In such a case, 
constant rotation per deformation increment will result 
in the fold limbs rotating through each other when the 
fold has attained an isoclinal form. This is clearly not 
possible and thus the rotation component must vary 
during fold development. A method of determining the 
variable increment, here termed 'buckling rotation' 
from existing data on fold growth, is described below. 

* Present address: I.K.U., H~kon Magnussons Gate 1B, P.O. Boks 
1883, Jarleslena, 7001 Trondheim, Norway. 

When a layer which has a different competence from 
its matrix is shortened in a direction parallel to the layer, 
it responds by buckling and folds develop. Once a fold 
has formed, the fold limbs lie at an angle to the bulk- 
shortening direction and further rotation can be broken 
down into two components: (a) the rotation which would 
occur due to pure shear if no competence contrast 
existed; and (b) the additional rotation due to the buck- 
ling of the layer (Fig. la). Both components add up to 
give the total rotation of the layer. In the two-dimen- 
sional case, the rotation of a passive layer due to pure 
shear can be calculated for a small increment of deforma- 
tion using equation 3-34 of Ramsay (1967); 

tan 0' = tan 0(21/22) 0'5, 

where 0 is the angle of dip of the layer to the shortening 
direction (22) prior to deformation, 0' is the angle of dip 
of the layer after deformation, and 21,22 are the princi- 
pal quadratic elongations of the deformation increment. 

By subtracting this 'pure shear' dip from the actual dip 
of the layer after successive equal increments of bulk- 
shortening strain, the 'buckling rotation' values can be 
calculated, and its variation throughout the strain history 
documented. Figure l(b) shows an example of the total 
rotation per increment of bulk-shortening strain sepa- 
rated into 'pure shear rotation' and 'buckling rotation', 
against bulk strain, calculated for a buckle-fold model 
from Shimamoto & Hara (1976). The sum of the 'pure 
shear' and 'buckling rotation' components is the total 
rotation for each increment. The total rotation and 
buckling rotation components show an initial sharp 
increase followed by a gradual decrease with bulk strain 
while the pure shear rotation shows lower values, 
increasing more gradually to a maximum at strains that 
correspond to a limb dip of 45 ° (in this case 38% es); the 
maximum value depends on the size of the bulk-shorten- 
ing increment chosen (2% es here). 
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Fig. 1. (a) For each small segment of the strain vs limb dip curve, the rotation that would occur due to pure shear if no 
competence contrast existed (a) can be calculated. The difference between this and the total rotation for this segment is the 
additional rotation due to buckling, here termed 'buckhng rotation' (/3). (b) Plots showing the variation in total, 'pure shear' 
and 'buckling rotation' per 2% es increment of strain with respect to strain for a single-layer buckle fold model (viscosity 

ratio 100) from Shimamoto & Hara (1976). 

For any strain increment, the 'pure shear rotation' 
component corresponds to the rotation occurring when 
no competence contrast exists between the layer and its 
matrix and is therefore the minimum possible value for 
the total rotation. The quantity 'buckling rotation' there- 
fore represents the rotation over and above this 
minimum value. Figure l(b) shows that the 'pure shear 
rotation' component is itself variable with strain and 
thus, by using this component as a base the rotational 
behaviour of a buckle-fold limb may be compared to that 
of a passive layer. 

The above method has been applied to three finite- 
element studies and one experimental study of fold 
growth from the literature. The finite-element models 
for single layers are from Shimamoto & Hara (1976) and 
Hudleston & Stephansson (1973), and for multilayers 
from Williams (1980). In these two-dimensional models, 
the layer has the form of a low-amplitude fold (necessary 
to initiate folding in the models) with the axial trace 
perpendicular to the principal compressive stress direc- 
tion. For a more detailed account of the finite-element 
method, the reader is referred to the above aCthors. 

The experimental model of single-layer b~ackle folds 
is from Hudleston (1973). The layer is embedded in 

a material of differing viscosity, with the maximum 
compressive stress applied parallel to the layer. Plane- 
strain deformation is imposed, thus preserving area 
within the study plane. The treatment is therefore two- 
dimensional and the results can be compared with 
those of the above finite-element models. In this experi- 
mental model, the naturally occurring irregularities of 
the layer surface were allowed to initiate the folding 
process. 

In all models, the quantity 'limb dip' refers to the 
maximum angle between the layer and the maximum 
compressive stress direction and thus refers to the dip at 
the limb inflexion point, the fastest rotating part of the 
layer. The variation in limb dip with respect to strain is 
recorded in graphical form by Hudleston & Stephansson 
(1973, fig. 7), Shimamoto & Hara (1976, fig. 3), Williams 
(1980, fig. 7) and in numerical form by Hudleston (1973, 
fig. 3). For the purposes of comparison, percentage 
shortening, the unit of strain used by Hudleston and 
Stephansson (1973) and Hudleston (1973), has been 
converted to natural strain (% es) used by Shimamoto & 
Hara (1976) and Williams (1980). Buckling rotation 
values have been calculated for 2% es increments of 
strain throughout. 
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THE VARIATION OF BUCKLING ROTATION 
WITH STRAIN IN MODEL FOLDS 

The finite-element models of Shimamoto & Hara 
(1976) and Hudleston & Stephansson (1973) simulate 
the growth of a low amplitude fold with the dominant 
wavelength (i.e. the fastest growing fold wavelength at 
low amplitudes, Biot 1957). Shimamoto & Hara (1976) 
produced models at viscosity ratios of layer to matrix of 
100, 50, 30 and 10 with initial fold limb dips of 1, 4 and 
10 °. Hudleston & Stephansson (1973) modelled folds in 
layers with viscosity ratios of 1000, 100, 10 and 1, all 
models having an initial limb dip of 3 ° . From the graphs 
of limb dip vs strain, buckling rotation vs strain curves 
have been constructed and these are shown in Figs. 2 
and 3. 

All models give skewed, bell-shaped curves (Figs. 2 
and 3), indicating that buckling rotation increases 
sharply with bulk strain in the early stages of folding and 

then decreases with approximately exponential decay as 
the limb dip approaches high angles (i.e. as the fold 
tends towards isoclinal). The higher the viscosity ratio 
between the layer and its medium, the greater the 
maximum value of buckling rotation and the more 
markedly skewed the curve. This is in agreement with 
the observation of Shimamoto & Hara (1976) that fold 
growth is initially rapid, but decreases in the later stages, 
and that the rate of fold growth is lower for decreasing 
viscosity ratios. Thus, for a viscosity ratio of 1000 (Hud- 
leston & Stephansson, 1973), a large maximum buckling 
rotation value is reached within the first 2% es strain 
increment, whereas for viscosity ratios of 10, maximum 
buckling rotation values are low and occur at strain 
values of around 30-40% es. 

In Fig. 2(b), the plots for models using initial limb dips 
of 4 and 10 ° are superimposed so that their limb clips 
correspond, using the case of initial limb dip 1 ° as a 
reference curve. The buckling rotation vs strain curves 
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Fig. 2. Curves of buckling rotation vs bulk strain constructed from data from the finite-element single-layer fold models of 
Sliimamoto & Hara (1976). The models were initiated with low-amplitude folds of dominant wavelength. (a) All models 
show skewed, bell-shaped curves in which the maximum value of buckling rotation and the skewness increase with viscosity 
ratio (/~t//z2). The effect of increasing the initial limb dip is to shift the curves to the left. (b) For each viscosity ratio, the 

curves of initial limb dip 4 and 10 ° have been superimposed on that of initial limb 1 °. The curves show good agreement. 
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Fig. 3. Curves of buckling rotation vs bulk strain for the finite-element single-layer models of Hudleston & Stephansson 
(1973). (a) Curves for models in which the initial fold, of limb dip 3 °, was of dominant wavelength for each of the viscosity 
ratios modelled. (b) Curves for three models of viscosity ratio 10, showing the effects of varying layer thickness for a constant 
wavelength. The thinner layer shows increased, and the thicker layer decreased, buckling activity with respect to the 

dominant wavelength model. 

show good agreement although there is a slight tendency 
for higher initial limb dip models to reach higher buck- 
ling rotation values. 

Hudleston & Stephansson (1973) modelled the effects 
of varying layer thickness (h) for a constant viscosity 
ratio (/~1//~2 = 10) and wavelength (L) and the resulting 
buckling rotation vs strain curves are shown in Fig. 
3(b). The thinner layer (L/h = 15.1) shows a slight 
increase in buckling rotation and the thicker layer (L/ 
h = 4.0) a reduced buckling rotation, compared to the 
dominant wavelength model (L/h = 7.4). This is in 
agreement with Hudleston and Stephansson's observa- 
tion that the thinner layer behaves in the most compe- 
tent, and the thicker layer in the least competent 
fashion. 

The finite-element analyses are compared to the 
experimental models of single-layer folds of Hudleston 
(1973). In these experiments, solutions of ethyl cellulose 
in benzyl alcohol, the behaviour of which closely approx- 
imates viscous flow during deformation, were used. 
Hudleston found that the effects of diffusion significantly 
reduced the ideal viscosity ratios and so apparent viscos- 
ity ratios were calculated using the wavelength/thickness 
ratios of the folds produced. The buckling rotation vs 
strain curves for the experimental models are shown in 
Fig. 4. The curves from the experimental models show 
similar forms to those derived from the finite-element 
models; that is, skewed, bell-shaped curves whose 
maxima decrease and migrate to the right with decreas- 
ing viscosity ratio of layer to matrix. 
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Fig. 4. Curves of buckling rotation vs bulk strain for experimental models of single-layer buckle folds, from Hudleston 
(1973). Natural irregularities in the layer surface were used to initiate folding. 
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Fig. 5. Curves of buckling rotation vs bulk strain for the finite-element 
multilayer models of Williams (1980). The curves show the same 
general form (skewed, beU-shaped) as those for single-layer models. 
The viscosity ratio is kept constant (653) and the thickness ratio 
(competent: incompetent) of the layers varied, as labelled. Maximum 
values of buckling rotation and curve skewness increase with decreas- 

ing thickness ratio. 

& Hara (1976) with the experimental model of Hudles- 
ton (1973) is shown in Fig. 6(a)-(d) for viscosity ratios 
100, 50, 30-24 and 10-11. The sets of curves show 
generally close agreement, especially for the maximum 
buckling rotation values. The highest discrepancies in % 
es values corresponding to the peaks of curves (indicated 
by the arrows in Fig. 6) occur at the lowest viscosity 
ratios modelled (10-11), (Fig. 6d). Here, the maximum 
buckling rotation values for the experimental model 
occurs further to the right, at a higher bulk strain. The 
finite-element models are initiated with a low-amplitude 
fold of dominant wavelength whereas the experimental 
fold is not, and thus the position of the experimental 
curve probably reflects the amount of strain needed for 
the formation of the dominant wavelength fold. 

The multilayer models of Williams (1980) have a 
viscosity ratio of 653 and are compared to the single- 
layer models of viscosity ratios of 1000 and 100 (Hudles- 
ton 1973) in Fig. 7. Although the curves have similar 
shapes, it can be seen that the peaks of the curves for 
similar strain values reach much higher values of buck- 
ling rotation in the multilayer model than in the single- 
layer model. The single-layer model can be thought of as 
a multilayer model in which the incompetent layer thick- 
ness is very large compared to that of the competent 
layer. Since the maximum buckling rotation value in the 
multilayer models decreases as thickness ratio increases, 
this suggests that, for a given viscosity ratio, there is an 
optimum thickness ratio at which buckling activity is at a 
maximum. 

The growth of folds in the interior region of a multi- 
layer complex composed of a regular sequence of compe- 
tent and incompetent layers, has been studied by 
Williams (1980) using finite-element methods. In these 
models, the geometry of each competent layer is con- 
strained by its neighbours to a similar style (Williams 
1980). Three models comprising different ratios of com- 
petent to incompetent layer thickness, each with a 
viscosity contrast of 653, are studied here. Buckling 
rotation vs strain curves, calculated from the models, are 
shown in Fig. 5. A similar pattern to the single-layer 
models, that of a skewed, bell-shaped curve, is produced 
by the multilayered models. Since the viscosity ratio is 
constant, the variation in maximum buckling rotation 
and skewness are here related to the thickness ratio 
between the competent and incompetent layers. Models 
composed of layers of equal thickness show the most 
extreme skewness and greatest value of buckling rota- 
tion and these factors decrease as the thickness ratio 
(competent: incompetent) increases. 

COMPARISON OF MODELS 

A comparison of the buckling rotation strain curves of 
single-layer models comprising the finite-element mod- 
els of Hudleston & Stephansson (1973) and Shimamoto 

RELATIONSHIP BETWEEN BUCKLING 
ROTATION AND LAYER-PARALLEL 

SHORTENING 

Hudleston (1973), Hudleston & Stephansson (1973) 
and Shimamoto & Hara (1976) also analysed layer- 
parallel shortening during folding for the buckle-fold 
models, using changes in arc length (length of the layer 
between fold-hinge points). Shimamoto & Hara (1976) 
found that the bulk of the layer-parallel shortening 
occurred up to limb dips of 15-20 ° , after which little 
shortening occurs and arc length was found to be almost 
constant after limb dips of 50--60 °. Hudleston & 
Stephansson (1973) found that for a viscosity ratio of 10, 
arc length changed only slightly after 50-60% shortening 
(limb dips of 36-56°), while for a viscosity ratio of 100, 
shortening was markedly reduced after limb dips of 35 °, 
and for a viscosity ratio of 1000, no detectable layer- 
parallel shortening occurred. In experimental studies, 
Hudleston (1973) noted that there was a marked slowing 
of arc length shortening after dips of 10--20 ° and after 
20-30 °, arc length was virtually constant. In Fig. 8, 
buckling rotation is plotted against limb dip, together 
with the above ranges in limb dip corresponding to most 
active layer-parallel shortening. For the models of 
Shimamoto & Hara (1976), the variation in initial limb 
dip for constant viscosity ratio was found to have little 
effect on the buckling rotation vs limb dip curves and 
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experimental model curve is displaced to the right. This is probably due to a delay in the experimental model caused by the 
development of the dominant wavelength fold which is already present at the start of deformation in the finite-element 

model. 

thus only the averages of these have been plotted in 
Fig. 8(a). 

In Fig. 8(a) & (b), showing the curves from the models 
of Shimamoto & Hara (1976) and Hudleston (1973), the 
range of limb dips marking the end of most active 
layer-parallel shortening coincides with the range of 
maximum values of buckling rotation. A similar 
relationship is evident in the model of Hudleston & 
Stephansson (1973) (Fig. 8c). For the model of viscosity 
ratio 100, the limb dip of the maximum buckling rotation 
value coincides with the limb dip at which layer-parallel 
shortening slows (35°). No layer-parallel shortening was 
detected for the viscosity ratio of 1000, and the buckling 
rotation vs limb dip curve shows that the maximum 
buckling rotation value occurs to the left of the first 
available value, i.e. within the first 2% e~ deformation 
increment. For the lower viscosity ratio of 10, only small 
changes in arc length occurred after limb dips reached 
36-56 ° . 

Thus the data suggest that, for moderate to high 
viscosity ratios, the bulk of the layer-parallel shortening 
coincides with the initial rapid increase in buckling 
rotation and that it declines markedly when buckling 
rotation reaches a maximum. At low viscosity ratios, as 
in the case of the Hudleston & Stephansson's (1973) 
model for viscosity ratio of 10, the layer-parallel shorten- 
ing is more likely to be controlled by the limb dip, which 
attained a high value before the maximum buckling 
rotation value was reached. 

CONCLUSIONS 

The rotation of a layer at any stage during buckle 
folding can be divided into two components: (a) the 
rotation which would occur due to pure shear if no 
competence contrast existed, termed 'pure shear rota- 
tion'; and (b) the additional rotation caused by the 
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competence contrast between the layer and its matrix, 
termed 'buckling rotation' .  The  'buckling rotation'  com- 
ponent  provides a measure of buckling activity. 

Four  models of buckle folding were used to calculate 
buckling rotation vs strain. All produced skewed, bell- 
shaped curves. For single-layer models, the maximum 
value of buckling rotation and skewness of the curve 
increased with increasing viscosity ratio between the 
layer and its matrix. Models of multilayers showed 
similar shapes of curves in which the maximum buckling 
rotation value and degree of skewness decreased with 
increasing competent  to incompetent layer thickness 
ratio, for a constant viscosity ratio. Comparison of the 
single-layer and multilayer curves suggests that for a 
given viscosity ratio, buckling activity is highest in the 
multilayer system. The period of most active layer- 
parallel shortening (decreasing arc length) occurs during 
the initial increase of buckling rotation; its wane coin- 
cides with the maximum buckling rotation. 

The usual method of presenting fold growth in experi- 
mental and theoretical models is a plot of limb dip 
against strain. Such curves express the total cumulative 
rotation. By using the incremental rotation and separat- 
ing it into 'pure shear' and 'buckling rotation'  compo- 
nents, the variation in buckling activity becomes clearer. 
Curves of buckling rotation vs strain or limb dip could be 
used to compare different model results, to compare 
buckling activity to other variables during fold growth, 
such as layer-parallel shortening, or to check the 

behaviour of model materials. The method therefore 
provides a useful aid in the analysis of buckle fold 
modelling results. 
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